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We quantitatively investigate the ideas behind the often-expressed adage “it takes volume to move stock
prices,” and study the statistical properties of the number of shares t@gdedr a given stock in a fixed time
interval At. We analyze transaction data for the largest 1000 stocks for the two-year period 1994—95, using a
database that records every transaction for all securities in three major US stock markets. We find that the
distribution P(Q,,) displays a power-law decay, and that the time correlation® ip display long-range
persistence. Further, we investigate the relation betw@gnand the number of transactioh,; in a time
interval At, and find that the long-range correlations@n, are largely due to those ®,;. Our results are
consistent with the interpretation that the large equal-time correlation previously found bedygend the
absolute value of price chan¢€,,| (related to volatility are largely due td\,; .

PACS numbsd(s): 05.40.Fb, 05.45.Tp, 89.96n

The distinctive statistical properties of financial time se-fluctuation analysi§5], which has been successfully used to
ries are increasingly attracting the interest of physidigls  study long-range correlations in a wide range of complex
In particular, several empirical studies have determined theystemg6]. We plot the detrended fluctuation functiéir)
scale-invariant behavior of both the distribution of priceas a function of the time scale. Absence of long-range
changeg2] and the long-range correlations in the absolutecorrelations would implyF(7)~7°% whereasF(7)~1°
values of price changd8]. It is a common saying that “it With 0.5<6=<1 implies power-law decay of the autocorrela-
takes volume to move stock prices.” This adage is exemplition function,
fied by the market crash of 19 October 1987, when the Dow a ay K (p—o_

Jones Industrial Average dropped 22.6% accompanied by an ([QaOITQat+ D)= (k=2-20). @
estimated & 10° shares that changed hands on the NewFor the parametea=0.5, we obtain the average valu®
York Stock Exchange alone. Indeed, an important quantity=0.83+0.02 for the 1000 stockfFigs. 2a) and 2b)]; so
that characterizes the dynamics of price movements is th&som Eq.(2), k=0.34+0.04[7].

number of shareQ,, traded (share volumgin a time To investigate the reasons for the observed power-law
interval At. Accordingly, in this Rapid Communication tails of P(Qx) and the long-range correlations @y, we

we quantify the statistical properties @, and the relation ~first note that

betweenQ,; and the number of traddd,, in At. To this Nt
end, we select 1000 largest stocks from a databd$e QMEZ a; 3
recording all transactions for all US stocks, and analyze i=1

tlrggzs]icggon data for each stock for the two-year perlodls the sum of the number of shareg traded for alli

. . . . =1,... N, transactions imt. Hence, we next analyze the
First, we consider the time seri¢45] of Q,; for one at y

. : o statistical properties ofj; . Figure 3a) shows that the distri-
stock, which shows large fluctuations that are strikingly nonbutilonlp(qp)) fcl)or thle s:qrhe f::?uur stgc%(s dis\i\é)lays a povvler-:aw

Gaussian[Fig. 1(a)]. Figure 1b) shows, for each of four decayP(q)~1/q*¢. When we extend this analysis to each
actively traded stocks, the probability distributioR$Q ») of the 1000 stocks, we obtain the average valiel.53
which are consistent with a power-law decay, +0.07[Fig. Ab)].

Note that{ is within the stable [ey domain 0<(<2,

1 suggesting thaP(q) is a positive(or one-sideflLévy stable
PPN (1) distribution[8,9]. Therefore, the reason why the distribution
(Qav) P(Qx1) has similar asymptotic behavior tB(q), is that

P(q) is Levy stable, and),; is related tag through Eq.(3).
When we extend this analysj46] to the each of the 1000 Indeed, our estimate af is comparable within error bounds
stocks[Figs. 1c) and Xd)], we obtain an average value for to our estimate ok. We also investigate if thg; are corre-
the exponenh =1.7+0.1, within the Lery stable domain 0 lated in “transaction time,” defined by, and we find only

P(Qa0)~

<N<2. “weak” correlations (the analog ofé has a value=0.57
We next analyze correlations iQ,,. We consider the +0.04, close to 0.5). _
family of autocorrelation functions ([ Qa(t) 13 Qa(t To confirm thatP(q) is Levy stable, we also examine the

+7)]2), where the parameter(<\/2) is required to ensure behavior of Q,=X{_,q;. We first analyze the asymptotic

that the correlation function is well defined. Instead of ana-behavior ofP(Qy) for increasingn. For a Levy stable dis-

lyzing the correlation function directly, we apply detrendedtribution, n**P([Q,—(Q,)]/n**) should have the same
functional form asP(q), where(Q,)=n{q) and{---) de-
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~1o | w"@% ©1000stocks | a=0.5[7], averaged for all stocks within each gro(p-Vl) as a
gw-z b \%, o1 ] function of the time lagr. F(7) for a time series is defined as the
k) o II < e . . . . . .
210 | \%, ey x? deviation of a linear fit to the integrated time series in a box of
g0} "y o size 7 [5]. An uncorrelated time series displaysf¢r) ~ 7°, where
=5 v . . .
h vor \\%;%g v 6=0.5, whereas long-range correlated time series display values of
2&127 Iah=27 \\ ,,;f exponent in the range 0s55<1. In order to detect genuine long-
310‘* NP, | range correlations, the U-shaped intraday patternQgy is re-
& 100 L _ . N . \ moved by dividing eacl@,, by the intraday patterf8]. (b) Histo-
o gizedo gram of § obtained by fitting~ () with a power-law for each of the
ormalized Q,, . .
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pane). (b) Probability density functionP(Q,,) for four actively LT Nw rwd 100 10
. ormalize
traded stocks, Exxon Corp., General Electric Co., Coca Cola Corp., i
and AT&T Corp., shows an asymptotic power-law behavior char- wor H"rs‘esﬁmm (1000 sl

acterized by an exponenttI\. Hill's method [16] gives\ =1.87
+0.14, 2.1:0.17, 1.9 0.20, and 1.720.09, respectively(c)
P(Q,¢) for 1000 stocks on a log-log scale. To choose compatible
sampling time intervala\t, we first partition the 1000 companies
studied into six groupgl2] denoted |-VI, based upon the average
time interval between trade&t. For each group, we chooskt
>106t, to ensure that each interval has a sufficidit. Thus we
chooseAt=15, 39, 65, 78, 130, and 390 min for groups I-VI o0 " Expi',fe,,tg 80 0

respectively, each containing 150 companies. Since the average

value ofQ,, differs from one company to the other, we normalize  FIG. 3. (a) Probability density function of the number of shares
Q4 by its median. Each symbol shows the probability density func-g; traded, normalized by the average value, for all transactions for
tion of normalizedQ,, for all companies that belong to each group. the same four actively traded stocks. We find an asymptotic power-
Power-law regressions on the density functions of each group yielthw behavior characterized by an exponéntFits yield valuess

the mean valuex=1.78+0.07. (d) Histogram of exponents; =1.87+0.13,1.61-0.08,1.66-0.05,1.470.04, respectively for
for i=1,...,1000 stocks obtained using Hill's estimatf16], each of the four stockgb) Histogram of the values af obtained
shows an approximately Gaussian spread around the average valigs each of the 1000 stocks using Hill's estimafa6], whereby we
A=1.7+0.1. find the average valug=1.53+0.07.
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FIG. 4. (a) Probability distribution ofQ,, as a function of increasing=1, ...,256 apparently retains the same asymptotic beha{bpr.
Scaling of therth root of therth momentq x,]*"" with increasingn for the same four stocks. The inverse slope of this line yields an
independent estimate of the exponéntWe obtain{=1.43+0.02,1.35-0.03,1.42:0.01,1.410.02, respectively(c) Histogram of expo-
nents{ obtained by fitting a power-law to the equivalent of pddx for all 1000 stocks studied. We thus obtain a valise1.45+0.03
consistent with our previous estimate using Hill's estimatdyr.Histogram of slopes estimated using Hill's estimator for the scaled variable

x=[Qar— ()N J/NF

compared to that of,;. We obtain a mean value 0.1 for the tail exponent of, consistent with our estimate

of the tail exponenh for Q,,. (€) Detrended fluctuation functioR(7) for y, where each symbol denotes an averagg(af) for all stocks
within each grougl-VI as in Fig. ). (f) Histogram of detrended fluctuation exponents oiWe obtain an average value for the exponent
0.61+0.03 which indicates only weak correlations compared to the value of the expédr€n83+0.03 forQ,; .

notes average values. Figur@dshows that the distribution (ii) P(q) is consistent with a [wy stable distribution with
P(Q,) retains its asymptotic behavior for a rangenpfcon-

sistent with a Lgy stable distribution. We obtain an inde-
pendent estimate of the expone&nby analyzing the scaling

behavior of the momentg,(n)=(|Q,—(Q,)|"), wherer
<\ [10]. For a Levy stable distribution] x,(n)]* ~n'%.
Hence, we plof «,(n)]*" as a function oh [Figs. 4b) and

4(c)] and obtain an inverse slope 6f 1.45+0.03, consis-

tent with our previous estimate ¢f[11].
Since theg; have only weak correlationshe analog ofs

has the value=0.57), we

ask howQ,;=3=Nq; can show

exponent £, and therefore, N

1/
At

P([Qar—(a)N, J/NTE)

should, from Eq(3), have the same distribution as any of the
g; - Thus, we hypothesize that the dependend® gfon N,

1

can be separated by defining=[Qa;—(q)Nx]/N3},
where y is a one-sided Dey-distributed variable with zero
mean and exponerdt [8,9]. To test this hypothesis, we first
analyze P(x) and find similar asymptotic behavior to
P(Qxt) [Fig. 4d)]. Next, we analyze correlations jp and
find only weak correlationgFigs. 4e) and 4f)], implying
that the correlations iMQ,; are largely due to those of
much stronger correlationsi€ 0.83). To address this ques- Ny, .
tion, we note thati) N, is long-range correlatedL2], and

An interesting implication is an explanation for the previ-
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ously observed13,14] equal-time correlations betwe&; V- Since Q,u; depends onN,; through Qa;={(q)Ny;
and volatility V5., which is the local standard deviation of +N%¢y, and the equal-time correlationgN,W,,),
price change,,. Now V=W, VNy,, sinceG,, depends  (N,,x), and(W,x) are small(correlation coefficient of the
on Ny, through the relatiorG,;=W,\/Ny€, wheree is a  order of ~0.1), it follows that the equal-time correlation
Gaussian-distributed variable with zero mean and unit variyQ,,V,,)o(N¥3 — (N, }(N¥2, which is positive due to the

ance anqNAt IS the variance of price changgs due toW'g Cauchy-Schwartz inequality. Therefor@Q,Va,) is large
transactions im\t [12]. Consider the equal-time correlation, pecause ofN,;, .
(QatVar), Where the means are subtracted fr@n, and
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